MATH1010 Assignment 3 Suggested Solution

1. Let $x \in (a, b]$

By mean value theorem, f(x) - f(a) = f'(c)(x - a) for some $c \in (a, x)$ Since f'(x) = 0 for any $x \in (a, b)$, we have f(x) = f(a) for any $x \in (a, b]$ Hence f is a constant function.

2. For 0 < y < x and p > 1

Let
$$f(z) = z^p$$

By mean value theorem,

$$f(x) - f(y) = f'(c)(x - y) \text{ for some } c \in (y, x)$$
$$= pc^{p-1}(x - y)$$

Thus $py^{p-1}(x-y) \leq pc^{p-1}(x-y) \leq px^{p-1}(x-y)$ And $py^{p-1}(x-y) \leq x^p - y^p \leq px^{p-1}(x-y)$

3. For $0 \leq x_1 < x_2 < x_3 \leq \pi$,

$$\sin x_2 - \sin x_1 = \cos(a)(x_2 - x_1)$$
 for some $a \in (x_1, x_2)$

$$\sin x_3 - \sin x_2 = \cos(b)(x_3 - x_2)$$
 for some $b \in (x_2, x_3)$

Then we have $0 < a < b < \pi$ and $\cos(x)$ is strictly decreasing function on $(0, \pi)$

Hence $\cos(a) > \cos(b)$ and $\frac{\sin x_2 - \sin x_1}{x_2 - x_1} = \cos(a) > \cos(b) = \frac{\sin x_3 - \sin x_2}{x_3 - x_2}$

4. Let $f(x) = \ln(1+x)$, by mean value theorem

$$f(x) - f(0) = f'(c)(x - c)$$
 for some $c \in (0, x)$

$$\ln(1+x) = \frac{1}{1+c}x$$
$$\frac{1}{1+x} < \frac{1}{1+c} < 1$$
$$\frac{x}{1+x} < \frac{x}{1+c} < x$$

Therefore, $\frac{x}{1+x} < \ln(1+x) < x$ for x > 0. Putting $x = \frac{1}{y}$, then we get $\frac{y}{1+y} < \ln(1+\frac{1}{y}) < \frac{1}{y}$

- 5. Let $f(x) = \frac{a_1}{2}x^2 + \frac{a_2}{3}x^3 + \frac{a_3}{4}x^4 + \dots + \frac{a_n}{n+1}x^{n+1}$ $f'(x) = a_1x + a_2x^2 + \dots + a_nx^n$ By mean value theorem, f(1) - f(0) = f'(c)(1-0) for some $c \in (0,1)$ Hence $\frac{a_1}{2} + \frac{a_2}{3} + \frac{a_3}{4} + \dots + \frac{a_n}{n+1} = a_1c + a_2c^2 + \dots + a_nc^n$ So $a_1x + a_2x^2 + \dots + a_nx^n = \frac{a_1}{2} + \frac{a_2}{3} + \dots + \frac{a_n}{n+1}$ has root between 0 and 1
- 6. For $a \neq 0$,

By mean value theorem, f(a + b) - f(b) = f'(h)a for some $h \in (b, a + b)$ f(a) - f(0) = f'(k)a for some $k \in (0, a)$

Then we have $h \ge k$ and f'(x) is monotonic increasing $\operatorname{on}(0,\infty)$

Therefore,

$$f(a+b) - f(b) = f'(h)a$$

$$\geqslant f'(k)a$$

$$= f(a)$$

$$f(a+b) \ge f(a) + f(b)$$

For a = 0, L.H.S = f(b) = R.H.S

7. For $x, y \in \mathbb{R}$,

$$\sin x - \sin y = \cos(c)(x - y) \qquad \text{for } c \text{ between } x \text{ and } y$$
$$|\sin x - \sin y| = |\cos(c)||x - y|$$
$$\leqslant (1)(|x - y|)$$
$$= |x - y|$$

So $\sin x$ satisfies the Lipschitz condition on $\mathbb R$